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1. Introduction

From knowledge graphs to exceptional facts

Denzel Washington

Denzel Hayes Washington Jr. is an American actor,
director, and producer. He has received three Golden
CGlobe awards, a Tony Award, and two Academy
Awards: Best Supporting Actor for the historical war
Cyc drama film Glory and Best Actor for his role as a
GeoNames corrupt cop in the crime thriller Training Day.
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Among all the 95486 film
directors, Denzel Washington is
one of 4665 who appeared in a
film.
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Among all the 60602 film actors,
Denzel Washington is the only one
who served as one of executive
producers of Film (Chasing the
Dream) and Film (Safe House).
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1. Introduction

The problem, and the Maverick approach

Knowledge graphs (Linked Data) Maverick approach
o ~ Pattern
generator
Fact
reporter
Exceptionality Context
evaluator evaluator
2% Manually designed queries 9% Automated detection of exceptional facts
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1. Introduction

Related background

2010 2016 2018 2018

Outlier detection Outlying aspect Maverick: Discovering Exceptional Facts
mining from Knowledge Graphs
JGao-2010 F Angiulli - 2016 SIGMOD’18 VLDB’18
On community Outlying property Comprehensive High-level description
outliers and their detection with description and and demo
efficient detection numerical math basis
in information attributes
networks
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2. Maverick core features

Entity, context, pattern
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2. Maverick core features

The overall framework
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2. Maverick core features

Main Algorithm
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1 FACT-DISCOVER (G, vy, ¥, k, w)

10
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12
13
14
15

Input: G : the knowledge graph; vy € Vg : the entity of interest;
X : the exceptionality scoring function; k : the size of
output; w : the beam width

Output: H : k most exceptional context-subspace pairs

Py « (Vp, = {x0}, Ep, = @) ;

B « {Py};

1e1;

while B # @ and i < MAX_ITERATION do

i —i+1;Brmp <« O;

foreach P € B do

// Obtain contexts of v, and matches to P. (Section 3.1)

// Initial state. xp is a variable.
// Beam.

// Iteration number.

(350, Mp < CONTEXT-EVALUATOR( P, g, G);
foreach C € 050 do
// Exceptionality Evaluation. (Section 4)
A  EXCEPTIONALITY-EVALUATOR(9, C, k, x);
foreach A€ Ado H— HU{(C,A)};
// Find Y — the children of P. (Section 5)
Y« PATTERN-GENERATOR(vg, P, Mp, w, G);
B Btmp 2o Btmp UYy;
B « top-w of B¢ mjp based on heuristics A ;

// Section 5.4
return top-k pairs in H based on exceptionality scores;
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2. Maverick core features

Description of components

Exceptionality
Evaluator

¥ ¥

Takes the entity of Uses beam search to
interest and its look for promising
contexts SENEINIS

Looks for the k Implements domain
subspaces with specific heuristics
highest scores Beam width can be
Implements scoring tuned to requirements
functions

Context Evaluator

\ 4

e Uses a graph query
system (Neo4))

Pattern generator

e Takes a pattern as
input and returns the
matches

e Agnostic to query
processing system
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3. Experiments

Experimental setup & ﬂ@OL,j

Single node: 16-core, 32GB RAM
Datasets

WCGoals

49.078 nodes, 158.114 edges, 13 different
edge labels, and 11 entity types.

Methods compared

= Beam-Rdm

= Beam-Opt
- Beam-Conv OscarWinners
» Breadth-First 42.148 nodes, 63.187 edges, 24 distinct
edge labels, and 13 entity types.
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3. Experiments

Efficiency

Beam-Rdm Beam-Opt
1.0 1.0 ==
= 0.5 = 0.5
o F10°
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y ) 2
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70 50 100 0 50 100
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Figure 7: The heat map of exceptionality scores (y,) and times-
tamps of all the discovered context-subpsace pairs during 2-minute
runs for 10 entities of interest (vy) in WCGoals (k = 10, w = 10).
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3. Experiments

Efficiency

=~ Beam-Rdm =] = Beam-Conv =~ Beam-Rdm =] = Beam-Conv

- 9+ Beam-Opt —A' Breadth-First - 4 - Beam-Opt —A' Breadth-First
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a Varying k, fixing w = 10. b Varying w, fixing k = 10.
Figure 8: Effect of k and w on the number of evaluated patterns.
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3. Experiments

60 ST— -~ Beam-Rdm =3~ Beam-C 011.v
T 5 . —f¥— Beam-Opt —A—Breadt.h-F irs
E; 0T  Beam-Opt 3
S — — 5
= —1 Beam-Conv =
P
> I Breadth-First =
R J—
B Frequent Patterns o
* &
10.0 0.5 1.0 % I
Exceptionality y, < 9 A 6 3 10
Figure 13: Score distributions of Output size (k)
top-10 context-subspace pairs for Figure 14: Average coverage er-
10 entities, 10 2-minute runs per ror on 10 entities. Beam width
entity. 10.
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4. Conclusions

Takeaways and paper contributions

v/ The authors model an exceptional fact as a context-pattern pair on a
knowledge graph

v/ Exponential complexity of search is handled using beam search

v/ The framework is adaptable to domain specific requirements
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Thanks for your attention
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ACADEMY AWARD® WINNER

DENZEL ,
- WASHINGTON z o

ACADEMY AWARD® WINNER

FOREST
WHITAKER

Discussion ©

\w

“J % % %. One of the Best Pictures of the Year!
Powerful and Inspiring.”

-Roger Ebert, Chicago Sun-Times
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5. Discussion

Research

1. What other heuristics could be proposed in addition to the two presented
in the paper? Design requirements for a third heuristic?

2. How Maverick would perform over a completely different dataset?
Different proportions among nodes, edges, edge labels, and entity types.
3. What if we add attributes to the nodes and edges? Constraints

4. How to adapt Maverick to work over multiple/linked knowledge graphs?

Industry

5. What is an example of an application over Google knowledge graph?
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